

A246199


Odd halfZumkeller numbers.


2



225, 441, 1225, 2025, 3969, 5625, 11025, 18225, 21609, 27225, 35721, 38025, 50625, 53361, 65025, 74529, 81225, 99225, 119025, 127449, 140625, 148225, 159201, 164025, 184041, 189225, 194481, 207025, 216225, 233289, 245025, 275625, 308025, 314721, 321489
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Zumkeller numbers are numbers whose positive divisors can be partitioned into two disjoint sets whose sums are equal (A083207). HalfZumkeller numbers are numbers whose proper positive divisors can be partitioned into two disjoint sets whose sums are equal (A246198). All numbers in the sequence are not Zumkeller numbers. This is easily seen as the sum of proper divisors is even to be halfZumkeller, and therefore the sum of the divisors must be odd and thus not Zumkeller.


REFERENCES

S. Clark et al., Zumkeller numbers, Mathematical Abundance Conference, April 2008.


LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..503
K. P. S. Bhaskara Rao and Yuejian Peng, On Zumkeller Numbers, Journal of Number Theory, Volume 133, Issue 4, April 2013, pp. 11351155.


FORMULA

Odd numbers in A246198.


PROG

(Python)
from sympy import divisors
import numpy as np
A246199 = []
for n in range(3, 10**5, 2):
....d = divisors(n)
....d.remove(n)
....s, dmax = sum(d), max(d)
....if not s % 2 and 2*dmax <= s:
........d.remove(dmax)
........s2, ld = int(s/2dmax), len(d)
........z = np.zeros((ld+1, s2+1), dtype=int)
........for i in range(1, ld+1):
............y = min(d[i1], s2+1)
............z[i, range(y)] = z[i1, range(y)]
............z[i, range(y, s2+1)] = np.maximum(z[i1, range(y, s2+1)], z[i1, range(0, s2+1y)]+y)
............if z[i, s2] == s2:
................A246199.append(n)
................break


CROSSREFS

Cf. A246198, A083207.
Sequence in context: A207640 A267892 A216419 * A147276 A219022 A193003
Adjacent sequences: A246196 A246197 A246198 * A246200 A246201 A246202


KEYWORD

nonn


AUTHOR

Chai Wah Wu, Aug 21 2014


STATUS

approved



